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The models that describe our nonlinear phenomeana are defined through the
language of mathematics. The equations representing the models may be ordinary
differential equations (ODEs), or partial differential equations (PDEs). Moreover,
some problems are described by “algebraic” equations, or by integral equations, or
by some mixture. In addition to the differential equations there may be boundary
conditions or initial conditions. Faced with the great variety of possible combinations
and formats we basically restrict ourselves to the ODE situation. Many of the ideas
and methods can be applied in a similar way to other equations.

1. A computer experiment

We define y;(t) and y2(t) to be functions that solve the system of two ODEs

U1 = —y1 + A1 —y1) exp(y2)
Jo = —y2 + 16.2A(1 — y1) exp(y2) — 3y2

and satisfy the initial values
y1(0) = 0.5, y2(0) = 0.5;
for the background see WOBexd2. The symbol A stands for a parameter that may take

values in a range, say, between 0.125 and 0.26. Take any code for integrating ODE
initial-value problems, and integrate the equations for the time interval 0 < ¢ < 30.
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Fig. 1. Computer experiment. vertical axis: y1,
horizontal axis: time ¢. curves: behavior of ys(t)
for three values of the parameter A: 0.125 (solid line),
0.2 (dashed), 0.26 (dotted).
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For the first series of experiments we take constant values of A\ for each integra-
tion, but vary A from one integration to the next. This treatment of the parameter
A as being constant but variable is called quasistationary variation. In Figure 1 we
observe the results for three selected values of A\, namely A = 0.125, A = 0.2, and
A = 0.26. For example, take A = 0.125: We observe that after a transient phase
of, say, 0 <t < 10, the trajectory y;(t) becomes stationary — that is, it is attracted
by a state with a constant value. For A = 0.2 there is again a transient phase, after
which the trajectory becomes periodic with large oscillations. The stationary state,
and the periodic state respectively attract the neighboring trajectory. Both attracting
states are regular in shape. Finally, for A = 0.26 the attractor is again stationary, but
now on a higher level. The experiment has shown that the level and the quality of
solutions vary with the parameter.
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Fig. 2. y1(t) for 0 < ¢ <200 and A varying from 0.1 to 0.3

In a second type of experiment we let the parameter drift slowly in a nonstation-
ary way, A # 0. In order to move with the parameter through a range that matches
the first set of experiments, we chose the additional differential equation

A=0.001, A(0)=0.1

We may denote y3 := A and integrate a coupled system of three ODEs for 0 < ¢ < 200.
The result is seen in Figure 2. Because of the linear variation of A\, the horizontal axis
can be exchanged by an equivalent A-axis extending from A = 0.1 to A = 0.3, which
would indicate the current value of the parameter. Observing the result of Figure 2,
we come closer to an explanation of our quasistationary treatment reported above.
There appears to be a sudden transition from a more or less stationary state to a
strongly oscillating state at ¢t &~ 40 (A ~ 0.14). For further increasing ¢ (or \) the
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amplitude of the oscillation dimishes and dies out for ¢ ~ 150 (A =~ 0.25). Since A
is not constant, the experiment reported in Figure 2 does not settle in to a purely
stationary or purely periodic state. We note that for drifting parameters the location
of the attractor varies continuously, and the trajectory follows. Summarizing this
experiment we note that for A =~ 0.14 and A =~ 0.25 a threshold of the parameter
is passed. Later we shall explain such thresholds and the mechanism of switching
attractors as bifurcations.

2. The model problem

We assume that our biological, physical, technical ... problem is modelled by the
first-order system of ODEs

y=1(y, ) (1)

where y(t) is a vector function with n components y;(t), ¢ = 1,...,n. The overdot
indicates differentiation with respect to time ¢, and f is the right-hand side defining
the dynamical law. The state y that solves Eq.(1) depends on the real parameter
A € IR. Stationary solutions y* of (1) solve

f(y®,A) = 0. (2)

Periodic solutions of the autonomous system (1) satisfy y(t + T') = y(t) for all ¢
and a minimum period 7" > 0.

parameter

Fig. 3. Stable solutions of Eq.(3), y1(¢; A) for 0.2 < XA < 3.
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3. An example from chemistry

As an example consider WOBexd6, a chemical reaction with autocatalytic step

Y1 =3 —y1 — A\y1Y3,
Y2 = Y1 — Y2Y3, (3)
U3 = Y2y3 — AY1Y3,

which is taken from [Krug & Kuhnert, 1985]. Equation (3) is of the format of Eq.(1),
with n = 3. In Figure 3 we show solutions that are stable—that is, the impact of
small perturbations of the solutions decays to zero. Solutions y depend on time ¢,
and on the parameter A\. Both dependencies are indicated in Figure 3 where we show
solution profiles y;(¢; \) for various discrete values of the parameter A out of the
interval 0.2 < A < 3. There is a critical parameter value Ay = 1.30176 separating
two different regimes. For A < )¢ the stable solution is stationary. Each solution
profile in that regime is constant. The situation is different for A > A¢ where the
calculated stable solutions are periodic. As can be seen in Figure 3, the amplitudes
of the periodic orbits grow from zero (at \g) to larger values when A\ is increased.
The period varies too; the initial period for \y is Ty = 6.035555. The figure depicts
the values of y;(t) for one period; the periods are scaled to unity. The two other
components yo, and y3 vary similarly. Figure 3 depicts the asymptotic situation with
attracting stationary and periodic states; transient initial phases are not shown. The
stability of the solutions is indicated by the phase diagrams of Figure 4, and Figure
5. Since the trajectories y(t) of Eq.(3) are in the three-dimensional phase space R?
we have projected the curves in space to a plane for easy graphical demonstration.
Here the projection is to the (y1, y2)-plane. Starting from y(0) = (2,1, 1) we show the
transient initial phase where the trajectory approaches the “next” attractor. Figure
4 (for A = 1) depicts a situation with a stable spiral, and Figure 5 (A = 1.5) shows a
projection of the dynamics of an attracting periodic orbit. Note that the trajectories
do not intersect in the reality of phase space IR". As Figure 3 shows, periodic solutions
are born at \g; this phenomenon is called Hopf bifurcation.

Looking back at Figure 2 we may notice that the phenomenon taking place for
t ~ 150 (A =~ 0.25) is of that kind. Here, in the quasistationary setting of Eq.(3), the
attractors come out most regularly, as in Figure 3.

4. Branches

As illustrated by the above example of Eq.(3), and by the computer experiment
of section 1, solutions in general vary when the parameter is changed. Figure 3
has shown solutions for a discrete selection of A\ values. We could have chosen any
intermediate value of A and would have obtained solutions between those depicted.
There is a continuum of solutions parameterized by A. The slices in Figure 3 extend
to a continuous surface. We call a smooth continuum of solutions a branch.

The implicit function theorem (see any textbook of analysis) specifies sufficient
criteria guaranteeing that a branch can be parameterized by A. For a specific station-
ary solution (y*', A1) of Eq.(2) the criterion basically requires nonsingularity of the



Yy o 4 Uuvvllial < J

22

18

16

14

12 |

1

I I I I I I
13 14 15 16 17 18 1.9 2

Fig. 4. Eq.(3), A = 1, projection to the (y1,y2) plane.
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Fig. 5. Eq.(3), A = 1.5, projection to the (y1,y2) plane.

Jacobian matrix fy,(y*1, ;). Then there is an interval around A; such that for all A
in that interval Eq.(2) has a solution y* close to y*t.

5. An example from electrical engineering

The trigger circuit from WOBexa2 is described by

fi = (y1 —y3)/10000 + (y1 — y2)/39 + (y1 + A)/51 =0,

fo=(y2 —v6) /10 4+ 1(y2) + (y2 — y1)/39 =0,

f3 = (y3 — y1)/10000 + (y3 — y4)/25.5 = 0, ()
fa=(ya —y3)/25.5 + y4/0.62 + ys — y5 = 0,

fs=(ys —y6) /13 +ys —ya+ I(ys) =0,

fo = (Y6 — y2)/10 — [Ua(y3 — y1) — y6]/0.201 + (ys — y5)/13 = 0;

Ua(U) = 7.65 arctan (1962U), I(U)=5.6-10"8(e*Y —1).
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Fig. 6. Trigger Eq.(4), output voltage ys versus input voltage A.

This problem from [Pénisch & Schwetlick, 1982] is of the form f(y, \) = 0, with n = 6.
The variables y; are voltages. The input voltage is A, the output voltage is yg. Solving
Eq.(4) yields the hysteresis-type response diagram in Figure 6. Diagrams like Figure
6 depicting a scalar representative of y versus the parameter \ are called branching
diagram, or bifurcation diagram, or response diagram. (We use “bifurcation”
and “branching” as synonyms.) The branch of solutions is a (one-dimensional) curve
in the seven-dimensional (y, A)-space. The curve in Figure 6 is a projection to the
(ys, A)-plane. The bistable situation of the trigger is characterized by two bounding
critical solutions where the branch can not be parameterized by A; the tangent to
the branch in these points is “vertical” (i.e., perpendicular to the A-axis). These
two turning points have the threshold values \g = 0.601853, and Ay = 0.322866.
Obviously these are thresholds where jumps to the other stable level take place. At
these critical solutions the Jacobian f, is singular. But note that the curve can be
parameterized by 7. A turning point is also called fold bifurcation, or saddle node.

Fold bifurcations are frequently occurring in applications. For a boundary value
problem (not of the type of Eq.(1)) see the Duffing oscillator WOBexb3, or the cat-
alytic reaction WOBexbl1, or the electric power system WOBexd15.

6. Bifurcation

Loosely speaking, a bifurcation with respect to A is a specific solution at \g where
there is no neighborhood around Ay such that in this neighborhood the branch can
be uniquely extended. In short, at a bifurcation something “happens.” Qualitative
changes are tied to bifurcations. We have seen examples: The two turning points
in the trigger problem (see Figure 6) are bifurcation points. The Hopf bifurcation
point of the example of Eq.(3) is another example, which needs more explanation.
Schematically, the Hopf situation is as illustrated in the branching diagram of Figure
Ta.

At a Hopf bifurcation, the branch of stationary solutions does not bifurcate;
the Jacobian matrix fy (yo, A¢) is nonsingular. In Figure 7a, the branch of stationary
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Fig. 7. Hopf scenarios.

solutions extends beyond \g, but it is unstable for A > A\g. The Jacobian at a Hopf
bifurcation has a pair of purely imaginary eigenvalues +i(3. Here a branch of periodic
orbits is born. In Figure 7a, for A > A9, A — Ao the periodic solutions merge into
the stationary branch, the amplitude vanishes. The bifurcation is vertical, and the
amplitude locally behaves like /|\ — Ag|. This is seen in Figure 3, just concentrate
on the y;-values belonging to the minimum ¢-value. The vertical axes in Figure 7
depict a scalar measure of the solutions, such as

[yl =91(t")  where g1 (t*) = 0.

That is, [y] depicts a relative maximum, or minimum of y;. With this illustration,
the periodic oscillation can be visualized as in Figure 7b.

The situation of Figures 7a, 7b depicts a transition without jump: Passing \g
when increasing A one experiences a soft loss of stability of the stationary state; the
bifurcation is supercritical. In Figure 7c we illustrate a subcritical situation where
locally no stable state exists on one side of Ay (here for A > Xg). Globally, this
local scenario of Figure 7c often extends to a different situation, see Figure 7d: The
branch of unstable periodic orbits bends back, gaining stability at a turning point like
situation. Consequently, when we increase A beyond the critical Hopf parameter value
Ap a jump occurs. For A > Ay in Figure 7d, there are no neighboring small-amplitude
periodic solutions, and the dynamics is immediately attracted by a large-amplitude
oscillation. This large jump is the hard loss of stability. Note that Figure 7d shows
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a bistable situation for Ay < A < Ag. Note further that the described scenarios may
also happen for decreasing \.

Examples for a hard loss of stability are the computer experiment (WOBexd2),
the bogie model (WOBexd10), the nerve model WOBexd14, and the power system
WOBexd15. Examples for a soft loss of stability are again the computer experiment
(the “right” bifurcation), the Brusselator (WOBexdl), and the reaction of Eq.(3).

In any arbitrary example of the type of Eq.(1) one must expect the occurrence
of a fold bifurcation, or of a Hopf bifurcation. There are other bifurcations which
are less likely to be found in a general equation. But many equations involve some
symmetry. Often the symmetry in the equations reflects the common situation that
a model consists of two or more identical parts that are coupled. When two identical
subsystems are suitably coupled, one can exchange their states by a simple reflection.
The related symmetry is the Zs-symmetry. For equations with a Zs-symmetry the
pitchfork bifurcation is common too.

For a Zs-pitchfork bifurcation, the emanating branch consists of solutions that
lose their symmetry. This phenomenon is called symmetry breaking. Schemati-
cally, the related bifurcation diagrams resemble those of Figure 7 of the Hopf scenario;
compare Figure 8. The two asymmetric half-branches can be identified because they
are transformed into each other by the underlying reflection that describes the ex-
change of the states of the subsystem.

[v] .
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symmetric

asymmetric

Fig. 8. Zy-Pitchfork Scenario.

Examples of such pitchfork bifurcations are the Brusselator reaction WOBexal,
the flipflop WOBexall, WOBexd1, the superconductivity WOBexb2, and the Duffing
oscillator WOBexb3.

7. Period doubling and chaos

So far we have assumed solutions to Eq.(1) being regular in the sense stationary, or
periodic. The deterministic system (1) allows for aperiodic solutions that have been
named chaotic. There are several ways how to explain the onset of chaos. One of the
most suggestive scenarios of chaos is tied to period doubling.
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The local stability of a periodic orbit y is determined by the eigenvalues of the

monodromy matrix M := ®(7") where ®(¢) is the matrix function that solves the
linear matrix initial-value problem
d=f,(y,\)®, &0) =L (5)

These eigenvalues of M are called multipliers. One of the n eigenvalues is always
unity, p, = 1. The other n — 1 multipliers uq,..., ,—1 are monitored to examine
whether they are inside the unit circle (Ju| < 1), or outside. The periodic orbit is
locally stable in the case when all n — 1 multipliers are inside the unit circle. Also
the eigenvalues depend on the parameter, u = p(A). Varying A can result in one or
more multipliers crossing the unit circle. Assume this happens for Ao, |1;(Ao)| = 1
for some j. Then the solution corresponding to g is a bifurcation. Different types
of bifurcation occur depending on where f;(\) crosses the unit circle. The period
doubling happens in the case p;(Ag) = —1.

Dynamically, the period doubling bifurcation (or flip bifurcation) is the fol-
lowing scenario: Assume a branch of periodic solutions parameterized by A with stable
orbits on one side of Ay (say, A < Ag) and a multiplier crossing the unit circle with
f(Ao) = —1. Then, locally, there are periodic orbits with the double period near A.
These double-periodic orbits form a new branch that emerges at A\g. Note that the
periods vary with A\, and the factor 2 of period doubling holds only asymptotically
for A — Ag. The situation typically is as in the left part of Figure 9, for \g = Ag1.

[yl .o

o000 00 fourfold period

L]
e ®0 0 000000 09 doypleperiod
.

stable Lesoo 000 oo o sngleperod
o unstable
1 | |
A
01 M2 Pos A

Fig. 9. Cascade of period doublings, schematically.

The “new” branch with the “double” period can experience a period doubling,
too (in Figure 9, for Agp2). There are many important applications were an infinite
chain of such period doublings occurs for g1, Ag2, Aos, ... In the supercritical case,
the stability is exchanged to the branches of the double period. After some period
doublings the period has become so large that the orbit looks irregular. As has been
shown, the bifurcation values \g, satisfy a universal scaling law,

lim 2 (914169 (6)

v—o0 A\, — A\py_1
This scaling law, named after Feigenbaum, has a remarkable consequence: There is an
accumulation point A\, of the sequence of period doubling bifurcations. Passing A
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means that the “period” has reached infinity. The resulting solution is fully aperiodic,
and is “chaotic.” In this scenario the irregularity of a chaotic solution can be explained
by the infinite number of unstable periodic orbits (UPOs) that are “left behind” at
the infinite sequence of period doublings. Imagine the y state space is packed with
UPOs, all repelling any trajectory that searches a path through that area. This state
of continuously being pushed by UPOs may explain the sensitive dependence on the
initial conditions that is a characterisitic criterion of chaos.
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Fig. 10. Eq.(7), bifurcation diagram y;(0) versus \.

8. An example: isothermal reaction

An isothermal reaction (from [Smith et al., 1983], WOBexd13) is modelled by

71 = y1(30 — 0.25y; — y2 — y3) + 0.001y2 + 0.1,
Y2 = y2(y1 — 0.001ys — \) + 0.1, (7)
Us = y3(16.5 — Y1 — 0.5y3) +0.1.

There is a Hopf bifurcation at \yg = 12.1435, and a sequence of period doubling

bifurcations, compare the branching diagram Figure 10. The critical parameter values
of period doubling are

A1 =10.5710
Ao = 10.1465
A3 = 10.0912
A4 = 10.0808.

These four values allow to calculate two of the Feigenbaum ratios in Eq.(6). The
ratios are 0.13, and 0.19. The asymptotic law allows to estimate the accumulation
point where chaos sets in. From Eq.(6) we derive the estimate

o 6)\V+1 - )\V

Moo = for & = 4.6692016 (8)
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Applying this to our sequence of period doublings we estimate that A, is as close
as oo ~ 10.078. Figures 11a, 11b show phase portraits of a periodic orbit of the
“double” period for A = 10.55, and of the fourfold period (A = 10.13). Figure 12
depicts an apparently chaotic solution for A = 10. The sequence of bifurcations from
stationary state (A = 12.9) to “period four” (A = 10.1) is illustrated by Figure 13.
Another interesting example with period doublings is the voltage collapse problem
WOBexd15.
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Fig. 11a. Eq.(7), periodic orbit, A = 10.55, projection to (y1,y2) plane.
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Fig.11b. Eq.(7), periodic orbit, A = 10.13, projection to (y1,y2) plane.

9. Other bifurcations

So far we have introduced three bifurcation mechanisms, namely turning point (fold
bifurcation), Hopf bifurcation, and period doubling (flip bifurcation). These three
bifurcations are the most important ones for a problem of the type of Eq.(1), because
they occur most frequently in applications. There are other bifurcation phenomena
which we briefly list.
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Fig. 12. Eq.(7), chaotic orbit, A = 10, projection to (y1,y2) plane.
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Fig. 13. Eq.(7), y1(¢t; A) for 10.1 < XA < 12.9, periods scaled to unity.

First we return to the pitchfork. The simplest equation with pitchfork is 0 =
Ay £ y3. The simplest equations exhibiting a certain phenomenon are called normal
forms. As mentioned above, in case the underlying equation supports a Zs-symmetry,
the pitchfork scenario is also likely to occur. The geometrical analogy of a pitchfork
illustration with that of a Hopf bifurcation is no coincidence since the normal form of
Hopf bifurcation is (in polar coordinates p, 1)

p=Ap—p°
g1 (9)

Solutions of this normal form include the stationary state p = 0, and the periodic
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state p(t) = V/A. In both cases p = 0 holds, and we have a pitchfork characterization
of the amplitude. If the equation supports no symmetry, then to have a pitchfork
more parameters than just A are required. Classifications of related bifurcations of
higher codimension can be found in [Golubitsky & Schaeffer, 1985]. The higher the
codimension, the less likely it is to find one. But bifurcations of higher codimension
play a prominent role as organizing centers in parameter space. We shall briefly return
to this in Section 10.

Branches of periodic orbits can show more bifurcation phenomena than just
period doubling. The multipliers can cross the unit circle of the complex plane at
+1. Then we encounter, for example, a turning point, or a pitchfork bifurcation. The
turning point of periodic orbits is sometimes called cyclic fold bifurcation. When
the crossing is with nonzero imaginary part, there is a bifurcation into a torus-like
object.

Periodic orbits are born in a Hopf bifurcation, and may end in a homoclinic
orbit. To explain the simplest such scenario imagine in a plane a stationary state
of saddle type. This saddle has a pair of entering trajectories and a pair of leaving
trajectories. In case the leaving trajectory bends back such that it is identical with
the entering trajectory we have a loop with infinite period. This is a homoclinic orbit.
A periodic stable orbit close to a saddle is depicted in the phase portrait of Figure
14. Assume this is the situation for A = A\g + ¢, and the periodic orbit and the saddle
approach each other for ¢ — 0. Then we encounter a homoclinic orbit for Ay and no
periodic orbit for Ay — e.

Fig. 14. Situation close to a homoclinic orbit.

This simplest scenario of a homoclinic orbit illustrates how an unstable station-
ary state annihilates a periodic orbit. Analog phenomena are also possible with other
unstable states. For example, a collision of an unstable periodic orbit might terminate
a chaotic attractor. Generally, unstable states play a fundamental role in organizing
dynamical behavior. This situation stresses the importance of calculating also unsta-
ble states. An example of the decisive role an unstable state plays in “killing” the
operating regime is provided by models of voltage collapse, see WOBexd15.

10. Multi-parameter problems

The problems discussed so far depend on one real parameter \. The standard sit-
uation in applications is that problems have several parameters A, v, 6, ..., say, m
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parameters. In freezing m — 1 parameters to fixed values, and varying only one pa-
rameter (say, A), all the bifurcation phenomena mentioned above may occur. If we
unfreeze a second parameter (say, ), all bifurcation results depend on ~y. In particu-
lar, the critical bifurcation values A\g vary with . In the (), ~y)-parameter plane the
loci of bifurcations are curves, the bifurcation curves. Specifically, the Hopf bifur-
cations constitute the Hopf curves, and the turning points form the fold curves.
The points (Ao, 7o) where such bifurcation curves meet in the parameter plane are
bifurcations of higher singularity.

N

Fig. 15. Cusp scenario, with fold curves.

As a simple example, imagine a hysteresis situation as depicted in Figure 6.
The range of bistability between the values Ay of the two turning points may shrink
when a second parameter v is varied, see Figure 15. Denote v the specific value
where both A\g-values coincide. Then, on one side of 7, (say for v < 7p) a bistable
situation with jump phenomena exists whereas on the other side no bistability, and
no bifurcation of that kind exists. Exactly for v = 7 the bifurcation is a hysteresis
point, the two adjacent turning points have collapsed into a point of inflection. The
value 7q is seen as an organizing center separating two completely different dynamical
situations. This is illustrated by the parameter chart of Figure 16. The figure depicts
also a jump-free transition from one operation point in the parameter plane to another.
A related example is provided by a catalytic reaction (WOBexb1). The knowledge of
the bifurcation curves allows to find easily a curve of parameter combinations (A, )
that detours and avoids the jumps triggered by turning points.

If in addition to A and ~, a third parameter is considered to be freely variable,
the bifurcation curves in the parameter plane extend to bifurcation surfaces in the
parameter space. Possible bifurcation scenarios become even more involved. A the-
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Fig. 16. Jump-free path (dotted) in the parameter plane.

ory of singularites has been established to analyze related higher-order bifurcations
[Golubitsky & Schaeffer, 1985].

11. Other problems

The model problem in Eq.(1) is a representative of a huge class of applications. But
there are other problems equally important, and not covered by Eq.(1). For example,
many classical oscillation problems are non-autonomous, such as

i+ f(u,u) = coswt. (10)

The transformation y; := u, yo := 4, ys := t leads to a problem of type (1), but
this transformation may not be always advisable. Another class of problems not
immediately of the form in Eq.(1) are ODE boundary-value problems

y' =f(t.y,\), r(y(a),y(b))=0. (11)

Problems of this type describe, for example, Turing instabilities that are a mecha-
nism of one-dimensional pattern formation. The ODE situation discussed so far is
a special case of PDEs. PDE models may exhibit ODE bifurcations and many fur-
ther nonlinear phenomena. Both spatial and temporal phenomena need be studied.
Reaction-diffusion problems of the type

y: = DV2y + f(y, ) (12)

comprise all ODE settings. For vanishing diffusion (D = 0) the model problem of
Eq.(1) results. On the other hand, for a stationary situation (y = 0, one space
variable) the PDE (12) reduces to an ODE boundary-value problem of type (11).
The former case models purely temporal dynamics of the reaction-diffusion problem,
whereas the latter case concentrates on purely spatial patterns. In the general case,
temporal and spatial phenomena may be interrelated in complicated ways.
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12. Historical and bibliographical remarks

Early studies of nonlinearity include Euler’s buckling problem [1744], and the work
of Poincaré [1885]. Classical experimental studies were performed for fluid flow by
Bénard [1901], and Taylor [1923]. Analytical investigations are numerous; we mention
Liapunov’s work on stability [1892], the studies of Andonov and coworkers on “Hopf
bifurcation” in the 1930s [1987], Hopf’s general theorem [1942], Rayleigh’s analysis
of convection [1916], and the book by Arnol’d on geometrical methods [1983]. Since
the advent of powerful computers and algorithms the field has grown dramatically.
The literature is rich, and here is not the space to present a survey. An elementary
text book with many examples and practical hints is [Seydel, 1994]. Other texts are
oriented more analytically. We mention a few examples, [Guckenheimer & Holmes,
1983], [Arrowsmith & Place, 1990], [Golubitsky & Schaeffer, 1985], [Chow & Hale,
1982], on Hopf bifurcation [Hassard et al., 1981], and on the chaos-oriented side,
[Devaney, 1986], [Marek & Schreiber, 1991], [Schuster, 1984].
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